COURSE OUTLINE

1. GENERAL

SCHOOL	AGRICULTURAL SCIENCES				
DEPARTMENT	FOOD SCIENCE AND NUTRITION				
EDUCATION LEVEL	Undergraduate				
LECTURE CODE	ВП-413	SEMESTER 4 th			
LECTURE TITLE	Bioinformatics				
SELF-ENDED TEACHING ACTIVITIES		WEEKLY TEACHING HOURS		CREDIT UNITS (ECTS)	
LECTURES		3		3	
LABORATORY EXERCISES		3		3	
			6		6
COURSE TYPE	Scientific area of Molecular Biology and Bioinformatcs				
PREREQUISITE COURSES:					
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
THE COURSE IS OFFERED TO	Yes (English)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://food.uth.gr/theodoros-goulas/				

2. LEARNING OUTCOMES

Learning outcomes

Upon successful completion of the course, the student will be able to:

• Know how to perform information searches, using browsers, in databases and university libraries.

• Know how to operate some technical / scientific software programs

• Know how to carry out simple computer programs and how to apply them to solve specific problems in biology.

• Understand basic concepts related to genetic information flow and storage.

• Understand and uses the methods and techniques used to understand the transfer of genetic information as well as the analysis

• Apply the methods of DNA, RNA and protein analysis with Bioinformatics tools.

• Uses basic bioinformatics tools to extract information from databases.

• Understands the importance of Bioinformatics in Food Science and Nutrition

General Skills

1. Search, analysis and synthesis of data and information, also using the necessary technologies.

2. Adaptation to new situations.

3. Decision making.

4. Autonomous work.

5. Group work.

6. Generation of new research ideas.

7. Project planning and management.

8. Exercise criticism and self-criticism

9. Promotion of free, creative and inductive thinking

3. COURSE CONTENT

Theory

1st Week

Introduction to Bioinformatics.

2nd Week

Access to biological sequence data and digital libraries.

3rd Week

Pairwise alignment of sequences.

4th Week

BLAST. Basic local alignment search tool.

5th Week

Advanced sequence search programs.

6th Week Multiple sequence alignment.

7th Week Molecular phylogeny and evolution.

8th Week Analysis of Next Generation Sequencing data.

9th Week

Protein structure and protein databases.

10th week

Protein analysis and proteomics

11th week

Gene expression: analysis of data from microarrays and RNA-seq

12th Week Use of Bioinformatics in Food and Nutrition Science

13th Week Recap of the basic concepts of Bioinformatics.

Laboratory Exercises

1st Week Information retrieval from bioinformatic databases.

2nd – 3rd Week

Search for local alignment using the BLAST tool.

4th Week

Search for local alignment using advanced search tools.

5th Week

Analysis of multiple sequence alignments.

6th - 7th Week

Phylogenetic tree construction and interpretation.

8th Week

Using CHIMERA-X software to visualize protein models.

9th Week

Application of Bioinformatics in Food and Nutrition Science

10th - 11th Week

Presentation of Works

12th Week

Review of laboratory exercises

4. TEACHING AND LEARNING METHODS - ASSESSMENT

Delivery method	In person		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES	Specialized Software (ChimeraX, Pymol, Geneious, SnapGene, JalView, EndNote, Phenix, CCP4, COOT)		
TEACHING ORGANIZATION	Activity	Semester Workload	
	Lectures	39 (13 week x 3 hours)	
	Laboratory Exersises	12 (6 Lab. Ex x 2 hours)	
	Report of laboratory 30 exercises		
	Elaboration of a study	30	
	Preparation for written	39	
	exam	(13 Διαλ. x 3 ώρες)	
	Total Course (25 workload hours per credit unit)	150 (6 ECTS)	
STUDENT EVALUATION	 I. Written exam (80 %) of graded difficulty including: Multiple choice questions Short questions to develop Questions of crisis and development II. Laboratory exercises (20%): Participation and performance during the laboratory exercise Written report of laboratory results 		

Therefore: the total grade is obtained as a sum of the
above two individual evaluations.

5. SUGGESTED BIBLIOGRAPHY

-Suggested Bibliography :

1. Εισαγωγή στη Βιοπληροφορική, ARTHUR M. LESK

2. Βιοπληροφορική, Α. BAXEVANIS, B.F. OUELLETTE

3. ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ, Σοφία Κοσσιδά

4. Βιοπληροφορική-Εφαρμογές Υπολογιστών στη Φροντίδα Υγείας και τη Βιοϊατρική, Cimino J., Shortlife

-Related Scientifc Journals:
BioData Mining.
Bioinformatics.
Bioinformatics and Biology Insights.
BMC Algorithms for Molecular Biology.
BMC Bioinformatics.Nature
Science
Cell
Gene
PNAS USA
Molecular Cell Biology
Current Biology