

FOOD BIOCHEMISTRY

Syllabus

GENERAL						
SCHOOL	AGRICULTURAL SCIENCES					
DEPARTMENT	FOOD SCIENCE & NUTRITION					
PROGRAMME	UNDERGRADUATE					
COURSE CODE	MK615	SEMESTER		F	F	
COURSE	FOOD BIOCHEMISTRY RESPONSIBLE: D. MAKRIS					
TEACHING ACTI	VITIES		TEACHING HOURS PEF WEEK	2	CREDIT UNITS	
LECTURES			3		5	
		3				
COURSE TYPE	EXPANSION	OF BASIC KNOW	LEDGE			
PREREQUISITES:	NO					
TEACHING AND EXAM LANGUAGE:	GREEK					
COURSE OFFERED TO ERASMUS STUDENTS	NO					
COURSE SITE (URL)						

LEARNING OUTCOME

Learning outcome

The objective of the course is the understanding of biochemical reactions and processes that take place in foods. Specific attention is given to comprehension of basic enzymic reactions and their effect on the organoleptic characters, the safety and the nutritional value of foods. Laboratory exercises intent to accustom students with basic concepts of enzymic reactions and train them to fundamental calculations related with the kinetics of enzymic reactions.

Upon successful completion of the course, students will be able to:

- Understand basic biochemical reactions in foods
- Comprehend the impact of such reactions on food quality.
- Understand the application of biochemical technologies in food production and preservation.
- Understand methodologies of detection and determination of enzymic reactions.
- Propose food preservation methodologies

Department of Food Science & Nutrition UNIVERSITY OF THESSALY

Upon completion of the course, the students will acquire the following skills:

- Search, analysis and combination of data and information with the use of cutting edge technologies
- Decision making

Syllabus

1 st week: Enzymes – General information
2 nd week: Enzyme kinetics
3 rd week: Inhibition of enzymic activity
4 th week: Enzymic oxidation of lipids
5 th week: Enzymic browning
6 th week: Meat biochemistry
7 th week: Lipases
8 th week: Amylases and glycosidases
9 th week: Pectolytic enzymes
10 th week: Bioreactors
11 th week: Fermentation technology
12 th week: Fermented foods
13 th week: Overview - summary

Laboratory course: 1. Introduction 2. Determination of protein concentration 3. Enzyme activity measurement and determination of kinetic parameters – theoretical background 4. Polyphenoloxidase activity – comparative assessment of plant tissues 5. Onion peroxidase activity – pH effects 6. Inhibition of enzyme activity - Determination of kinetic constants. 7. Effect of heat treatment on onion peroxidase activity. 8. Determination of β -glycosidase activity 9. Overview - summary

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING MODE	On campus. In laboratory courses, following a short demonstration by the teaching staff, students carry out the experiment. Furthermore, students get accustomed to writing of scientific reports, in which the experimental data are appropriately given and discussed.				
USE OF COMPUTER SERVICES	Lectures are delivered by power point presentations and other audio media				
TEACHING ORGANISATION	Activity	Semester workload			
	Lecture course	39			
	Laboratory course	39			
	Study	47			
	Sum	125			
STUDENT EVALUATION	The language of evaluation is Greek. The final grade is 50% the grade of the lecture course and 50% of the laboratory course. The exams of the lecture course include multiple choice questions. The exams of the laboratory course include exercises (50%) and reports (50%).				

RECOMMENDED BIBLIOGRAPHY

Klonis I., 2020. Enzymic biotechnology. Crete University Press. ISBN: 9789605245870 Klonis I., 2018. Enzymology. EMBRYO Publ. ISBN: 9786185252014