COURSE OUTLINE

1. GENERAL

SCHOOL	AGRICULTURAL SCIENCES				
DEPARTMENT	FOOD SCIENCE AND NUTRITION				
EDUCATION LEVEL	Undergraduate				
LECTURE CODE	ME618	5618 SEMESTER 6 th			
LECTURE TITLE	Molecular Diagnostics in Food Science				
SELF-ENDED TEACHING ACTIVITIES		WEEKLY TEACHING HOURS	Ì	CREDIT UNITS (ECTS)	
LECTURES		3		3	
LABORATORY EXERCISES		2		2	
			5		5
COURSE TYPE	Scientific Area of Biology, Molecular Biology and Bioinformatics				
PREREQUISITE COURSES:	Biology, Molecular Biology and Bioinformatics				
LANGUAGE OF INSTRUCTION	Greek				
and EXAMINATIONS:					
THE COURSE IS OFFERED TO	Yes (English)				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)	https://food.uth.gr/theodoros-goulas/				

2. LEARNING OUTCOMES

Learning outcomes

Upon successful completion of the course, the student will be able to:

• To know the most important molecular techniques used in food and beverage safety and quality

• To know the applications of these in different foods with detailed examples.

• Have a good knowledge of molecular analysis, sampling, approximations and sizes.

• To know the basic equipment for the application of molecular analysis methods.

General Skills

1. Search, analysis and synthesis of data and information, also using the necessary technologies.

- 2. Adaptation to new situations.
- 3. Decision making.
- 4. Autonomous work.
- 5. Group work.
- 6. Generation of new research ideas.
- 7. Project planning and management.
- 8. Exercise criticism and self-criticism
- 9. Promotion of free, creative and inductive thinking

3. COURSE CONTENT

Theory

1st Week

Molecular techniques in food.

2nd Week

Unraveling the pathogenic behavior of plant pathogens through advanced molecular techniques

3rd Week

Molecular Characterization of Ochratoxigenic Fungal Flora as an Innovative Tool to Certify Coffee Origin

4th Week

Molecular and "Omics" Techniques for Studying Gut Microbiota Relevant to Food Animal Production

5th Week

Molecular identification and distribution of yeasts in fruit

6th Week

Current and new ideas on molecular methods for the identification of microbial growth in fruit juices

7th Week

Molecular techniques related to the identification of the bacterial microflora of seafood

8th Week

Assessment of the Microbial Ecology of Meat and Meat Products at the Molecular Level

9th Week

Molecular techniques for the determination of LAB in fermented cereals and meat products

10th Week

Determining the geographical origin of food with molecular techniques

11th Week

Molecular determination of enteric viruses in fresh produce

12th Week

Rapid detection of food pathogens using molecular methods 343

13th Week

Biosensor-based techniques: A reliable and primary tool for the detection of foodborne pathogens

Laboratory Exercises 1st Week Real-time Reverse Transcription PCR 2nd Week Quantitative PCR 3rd Week ELISA 4th Week Fluorescence in situ hybridization (FISH) 5th Week Rabid Amplified Polymorphic DNA (RAPD) 6th Week Terminal Restriction Fragment Length Polymorphism (TRFLP) 7th Week Denaturing Gradient Gel Electrophoresis (DGGE) 8th Week Temperature Gradient Gel Electrophoresis (TGGE) 9th Week Ribosomal Intergenic Space Analysis (RISA) 10th Week Next Generation Sequencing 11th Week Microarrays 12th Week Student presentations

13th Week Student presentations and review of laboratory exercises

Delivery methog	In person.		
USE OF INFORMATION AND COMMUNICATION TECHNOLOGIES			
TEACHING ORGANIZATION	Activity Semester Workload		
	Lectures	39 (13 week x 3 hours)	
	Laboratory exercises.	26 (13 Lb. Ex. x 2 hours)	
	Report of laboratory exercises	21	
	Preparation for written	39	
	exam	(13 Lect. x 2 hours)	
	Total Course (25 workload hours per credit unit)	125 (5 ECTS)	
STUDENT EVALUATION	 I. Written exam (80 %) of graded difficulty including: Multiple choice questions Short questions Questions of crisis and development II. Laboratory exercises (20%): Participation and performance during the laboratory exercise Written report of laboratory results Therefore: the total grade is obtained as a sum of the above two individual evaluations. 		

4. TEACHING AND LEARNING METHODS - ASSESSMENT

5. SUGGESTED BIBLIOGRAPHY

-Suggested Bibliography :

- Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability Aly Farag El Sheikha (Editor), Robert E. Levin (Editor), Jianping Xu (Editor)
- The Use of Molecular Biology Techniques in Food Traceability. M. Espiñeira, F.J.Santaclara

-Related Scientific Journals:

Journal of Microbiology, Biotechnology and Food Sciences Food Science and Technology Molecular Nutrition and Food Research Molecular Nutrition and Food Technology Molecular gastronomy Food Chemistry