

ORGANIC CHEMISTRY

Syllabus

GENERAL

SCHOOL	AGRICULTURAL SCIENCES				
DEPARTMENT	FOOD SCIENCE & NUTRITION				
PROGRAMME	UNDERGRADUATE				
COURSE CODE	ВП211	SEMESTER B			
COURSE	ORGANIC CHEMISTRY RESPONSIBLE: D. MAKRIS				
TEACHING ACTI	VITIES		TEACHING HOURS PEF WEEK		CREDIT UNITS
LECTURES			3		5
LABORATORY			3		
COURSE TYPE	SCIENTIFIC A	REA/SPECIFIC BA	ACKGROUND/ S	SKILL DE	EVELOPMENT
PREREQUISITES:	NO				
TEACHING AND EXAM LANGUAGE:	GREEK				
COURSE OFFERED TO ERASMUS STUDENTS	NO				
COURSE SITE (URL)					

LEARNING OUTCOME

Learning outcome

The objective of the course is the understanding of concepts pertaining to Organic Chemistry. Specific attention is given to comprehension of basic notions of molecular structure, chemical bonding, and characteristic reactions. Laboratory exercices intent to accustom students to basic concepts of separation and identification methods of specific groups of organic compounds and train them to basic handling of reagents and chemical techniques.

Upon successful completion of the course, students will be able to:

- Understand the basic principles of organic chemistry and its applications
- Have knowledge of basic notions, principles and theory related with organic chemistry.
- Understand and evaluate methods of organic chemistry.
- Select the most appropriate methodology for carrying out specific chemical analyses.
- Properly and safely use laboratory devices and equipment.
- Elaborate statistical data obtained from experimental procedures and draw conclusions.
- Comprehend the impact of data processing on the reliability of the results.
- Understand the implementation of methods of analysis on the determination of food composition.

General skills

Upon completion of the course, the students will acquire the following skills:

- Critical thinking and the link between theory and practical applications
- Search, analysis and combination of data and information with the use of cutting edge technologies
- Decision making
- Self-sufficient working
- Team working
- Advancement of free, creative and inferential thinking
- Development of connotative and divergent thinking

Syllabus

1st week: Functional groups – Hybrid orbitals - Resonance

2nd week: Alkanes and cycloalkanes 3rd week: Stereoisomerism and chirality

4th week: Acids and bases

5th week: Alkenes – Bonds, nomenclature, properties, reactions 6th week: Haloalkanes – Halogenation and radical reactions

7th week: Reaction mechanisms

8th week: Alcohols

9th week: Aldehydes and ketones 10th week: Carboxylic acids

11th week: Benzene and the concept of aromaticity

12th week: Amines

13th week: Overview - summary

Laboratory course: 1. Introduction 2. Laboratory safety – Good laboratory practice 3. Functional group detection 4. Liquid – liquid extraction 5. Solid-liquid extraction 6. Distillation 7. Thin-layer chromatography 8. Overview - summary

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING MODE	On campus. In laboratory courses, following a short demonstration by the teaching staff, students carry out the experiment. Furthermore, students get accustomed to writing of scientific reports, in which the experimental data are appropriately given and discussed.			
USE OF COMPUTER SERVICES	Lectures are delivered by power point presentations and other audio media			
TEACHING ORGANISATION	Activity	Semester workload		
	Lecture course	39		
	Laboratory course	39		
	Study	47		
	Sum	125		
STUDENT EVALUATION	The language of evaluation is Greek. The final grade is 50% the grade of the lecture course and 50% of the laboratory course. The exams of the lecture course include multiple choice questions. The exams of the laboratory course include exercises (50%) and reports (50%).			

RECOMMENDED BIBLIOGRAPHY

Brown W.H., Iverson B.L., Anslyn E.V., Foote C.S., Novak B.M., 2014. Organic Chemistry, 7th Edition, Wadsworth Cengage Learning, U.S.A.

Isac-García J., Dobado J.A., Calvo-Flores F.G, Martínez-García H., 2016. Experimental Organic Chemistry: Laboratory Manual, Elsevier, London, U.K.