Utilization of Agro-industrial By-products and Waste

Syllabus

GENERAL

LEARNING OUTCOME
Learning outcome

The objective of the course is the provision of knowledge pertaining to policies and scientific methods of management and valorisation of agri-food industry by-products and wastes. Particular emphasis is given in the avoidance of by-product/waste dumping generated during food processing and consumption, with the aim of reducing environmental aggravation. Furthermore, strategies and valorisation methodologies are also dealt with, to present routes of producing mainly high value-added products. Laboratory exercises intent to accustom students with practices related with agri-food by-product/waste valorisation as a strategy to produce high valueadded products.

Upon successful completion of the course, students will be able to:

- Have basic knowledge related with circular economy and associated domestic and international strategies
- Have knowledge on of the nature of agri-food wastes
- Have knowledge on avoidance/recycling/reuse of agri-food wastes.
- Have spherical knowledge on agri-food waste processing.
- Have spherical knowledge on on agri-food waste valorisation methods

General skills

Upon completion of the course, the students will acquire the following skills:

- Critical thinking and the link between theory and practical applications
- Search, analysis and combination of data and information with the use of cutting edge technologies
- Decision making
- Self-sufficient working
- Team working
- Advancement of free, creative and inferential thinking
- Development of connotative and divergent thinking

Syllabus

```
1 st week: Waste management and sustainability in the food industry
2 nd week: Biorefining - basic principles
3 rd week: Valorisation of food processing wastes
4 th week: Enzymes, proteins and peptides
5 th week: Polysaccharides
6 th week: Lipid-soluble pigments and antioxidants
7th}\mathrm{ week: Water-soluble pigments and antioxidants
8 th}\mathrm{ week: Fermentation technology
9th}\mathrm{ week: Production of alcohols and organic acids
10}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ week: Production of microbial lipids
11 }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ week: Citrus processing wastes
12 th week: Winemaking wastes
13}\mp@subsup{}{}{\mathrm{ th }}\mathrm{ week: Olive oil production and cereal processing wastes
```

Laboratory course: 1. Introduction 2. Determination of sugar content in grape must residues with the phenolsulfuric acid method. Calculation of potential alcoholic strength 3 . Determination of total polyphenols in olive leaves (Folin-Ciocalteu) - Effect of solvent extraction. 4. Estimation of the reducing power of extracts (FRAP method) 5. Anthocyanin determination in fruit processing by-products. 6. Determination of total carotenoids in tomato processing by-products 7. Determination of total proteins in whey (Bradford method). 8. Overview - summary

TEACHING AND LEARNING METHODS - EVALUATION

TEACHING MODE	On campus. In laboratory courses, following a short demonstration by the teaching staff, students carry out the experiment. Furthermore, students get accustomed to writing of scientific reports, in which the experimental data are appropriately given and discussed.		
USE OF COMPUTER			
SERVICES			Lectures are delivered by power point presentations and other audio
:---			
media			

RECOMMENDED BIBLIOGRAPHY

Gekas B., Balta-Brouma K.P. (2005). Food Industry \& Environment. Tziola Eds. [ISBN: 960-418-057-6]

