FOOD ENGINEERING

COURSE OUTLINE

GENERAL

SCHOOL	AGRICULTURAL SCIENCES				
DEPARTMENT	FOOD SCIENCE AND NUTRITION				
EDUCATION LEVEL	Undergraduate				
COURSE CODE	MK514		SEMESTER	E	
COURSE TITLE	FOOD ENGINEERING				
	RESPONSIBLE: I. Giovanoudis				
	SELF-ENDED TEACHING ACTIVITIES				
in case the credits are awarded in se		-	WEEKLY TEACHING	CREDIT UNITS (ECTS)	
	ires, Laboratory Exercises, etc. If the credits are				
awarded uniquely for the entire course, enter the weekly			HOURS		
teaching hours and total credits					
		Lectures	3	6	
Laboratory / Application Exercises			. 3		
COURSE TYPE	Scientific Are	ea of Food Engir	neering		
Background, General Knowledge,					
Scientific Area, Development Skills					
PREREQUISITE COURSES:					
FREREQUISITE COURSES.					
LANGUAGE OF INSTRUCTION and	Greek				
EXAMINATIONS:					
THE COURSE IS OFFERED TO	No				
ERASMUS STUDENTS					
COURSE WEBSITE (URL)					

LEARNING OUTCOMES

Learning Outcomes

The aim of the course is for students to acquire basic engineering knowledge in order to have the knowledge and resources to determine basic physicochemical characteristics as well as quantitative elements in food processing processes. The course is implemented in lectures (10), tutorials (3) and laboratory (6) exercises around the fields:

- Physicochemical properties of foods
- Heat transfer phenomena during food processing
- Calculation of heat and mass transfer coefficients, diffusion coefficients
- Mass and energy balances in food processes
- Interpretation of changes in physicochemical characteristics of foods during and after food processing
- Selection of food processing parameters

After completing the course, students will gain knowledge to solve problems related to basic food processes: pasteurization, sterilization, freezing, drying, condensation and their effect on basic food properties. In addition, students will be able to analyze and design processing processes as well as relate process parameters to food properties, quality, physicochemical and organoleptic characteristics.

General Skills

- Data search, analysis and synthesis
- Promotion of critical thinking
- Promotion of teamwork

COURSE CONTENT

1st Week: Introduction to Food Engineering 2nd Week: Thermophysical properties of foods 3rd Week-Tutorial (students may have a personal computer with them) Use of PC (excel) to process primary experimental data

4th Week-Tutorial (students may have a personal computer with them)

Use of PC (excel) for the mathematical description of experimental data and the development of mathematical models in food processes

5th Week: Heat transfer phenomena: Heating and cooling food

6th Week: Drying processes

7th Week: Food thermal processes: Boiling, pasteurization, sterilization

8th Week: Freezing food

9th Week: Equilibrium and Diffusion Processes

10th Week: Mechanical separations

Week 11: Challenges and New Trends in Food Engineering

12th Week-Tutorial exercises: Solving exercises using a computer

13th Week: Review and solve exercises

Laboratory exercises

#1: Water Sorption Isotherms in Foods: Curve Construction and Mathematical Modeling

#2: Heat Exchangers: A Study of Design Parameters for Pasteurization Processes

#3: Kinetic study of air drying

#4: Study of rheological characteristics in foods

#5: Kinetic study of osmotic dehydration

#6: Mass balances in condensation processes

TEACHING and LEARNING METHODS - EVALUATION

TEACHING METHOD	Face-to-face lectures in a class		ition		
	Exercises in suitable Laboratory/ Classroom.				
USE OF INFORMATION AND	Solution of tutorial exercises using PC				
COMMUNICATION TECHNOLOGIES	Computer use during lectures				
TEACHING	Activity	Semester's Workload			
ORGANISATION	Lectures	39			
	Tutorial exercises	9			
	Laboratory exercises	30			
	Study	20			
	Processing results of	30			
	laboratory exercises and				
	writing a report				
	Preparation for written	22			
	exam				
	Total (25 workload	150			
	hours per Credit unit)	150			
STUDENT EVALUATION	1. Written exam (70 to 100 %):				
	 Multiple choice and TRUE/FALSE questions 				
	 Questions of crisis and short development 				
	- Solving computational problems				
	2. Lab grade (0 to 30%):				
	- Participation and performance during the laboratory exercise				
	- Written report of laboratory results				
	- Oral examination on written reports				
	A prerequisite for the final writ	ten exam is the successful atter	ndance		
	of the laboratory part of the course. For the recognition of the				
	course, students must secure a passable grade in both individual				
	scores.				

RECOMMENDED BIBLIOGRAPHY

- Suggested Bibliography: Introduction to Food Engineering, R. Paul Singh, Dennis R. Heldman
- FOOD ENGINEERING, GOULA ATHANASIA, LAZARIDIS CHARALAMPOS -
- Basic Chemical Engineering Processes, 7th Edition, McCabe-Smith-Harriott _
- Fundamentals of Food Process Engineering, Food Science Text Series. Edited by R. T. Toledo, R. K. Singh and F. Kong -
- Handbook of Food Processing Equipment (Food Engineering Series) 2nd ed. 2016 Edition, by George Saravacos, Athanasios E. _ Kostaropoulos
- Food Engineering Handbook, Food Engineering Fundamentals, Edited By Theodoros Varzakas, Constantina Tzia _
- Related scientific journals: -
- Journal of Food Engineering, Official scientific journal of the International Society of Food Engineering _
- Journal of Food Process Engineering -
- Food Engineering Reviews _